使用社交账号登陆

当前位置: 主页 > 前沿 > 材料 • 化学

用天然DNA做出“塑料勺”

时间: 2020年08月19日 | 作者: Admin | 来源: ​BioArt
研究人员创新性地提出利用天然DNA来作为一种可再生资源来制造塑料制品以取代传统塑料。


未标题-1.jpg


撰文 | 王栋博士、罗丹教授

责编丨兮、迦溆


随着石化原料的不断开发与使用,石化产品造成的环境污染逐渐在影响地球的生态环境。传统石油基塑料,尤其是一次性塑料制品的使用每年大约会造成八百万吨塑料垃圾流向海洋。将可生物降解且可再生的天然资源转化为传统塑料替代品有望解决这些环境问题。


目前,天然多糖类、蛋白质已经被开发用于制作传统塑料制品,并展示了极大的潜力。然而,这些天然资源在这方面的应用存在一些缺点:1)这些转化过程类似于石油形成过程,需要对天然大分子进行人工降解和再聚合以制造最终塑料制品。这当中会消耗大量能源及其它资源。2)上述人工再聚合过程中会用到大量有机溶剂,并伴随着其它副产物和废物的产生,这个过程本身会对环境产生不良影响。3)上述这些天然资源通常来源于农作物,潜在地会与农业资源像农田和水等争夺资源,比如蛋白和淀粉的提取和使用常常会占用人们的食物资源。


如何利用可再生资源植被生物可降解的塑料产品就成为一个紧迫的诱人的重大课题。天然DNA作为一种天然生物大分子具有独特的物化性质包括基因编码能力、低的提取成本和环保的提取过程、良好的水处理能力以及完美的生物降解能力。


基于这些认识,近日,美国康奈尔大学罗丹教授研究组(第一作者为王栋博士)在Journal of the American Chemical Society杂志上发表文章Transformation of Biomass DNA into Biodegradable Materials from Gels to Plastics for Reducing Petrochemical Consumption,创新性地提出利用天然DNA来作为一种可再生资源来制造塑料制品以取代传统塑料。研究人员提出的转化过程利用天然DNA对一种小分子交联剂快速化学反应,将天然DNA溶解在水中室温下就可完成转化。此过程非常简单、高效、绿色低廉且无需对天然DNA做任何预处理,也对天然DNA来源没有限制。利用此一步式转化过程,通过调节转化过程中对溶剂和催化剂等,天然DNA可以被转化为凝胶材料、复合薄膜、图案化薄膜和日常塑料制品包括电线绝缘皮层、餐具和玩具等。


图1. DNA分子交联和DNA塑料的准备过程(图片来源JACS)


在水中交联天然DNA可以得到水凝胶,通过调节交联时间和天然DNA的浓度等参数可以调控水凝胶的机械性能,甚至可以制备像橡胶一样的水凝胶。通过引入能表达特定蛋白的的基因片段,他们的水凝胶就可以高效率的生产蛋白质。同时,也能可控地缓释蛋白等药物分子。细胞实验也显示天然DNA水凝胶具有非常好的生物相容性。这些特性不仅使得天然DNA具有和石化分子基水凝胶类似的机械性能,更重要是具有那些石化分子基不可能具备的性质----蛋白生产能力。


图2. DNA水凝胶的特性和功能(图片来源JACS)


用甘油置换转化过程中的水,研究人员首次制备了基于DNA的有机凝胶。由于甘油极低的蒸气压、生物相容性和可抗冻特性,天然DNA有机凝胶具有非常高的机械强度的同时也保持了非常惊人的可拉伸性。研究人员意外地发现天然DNA有机凝胶可以很好地粘附在各种表面上。特别是可以粘附在用于不粘锅涂层的特富龙表面上。由于甘油的抗冻性,天然DNA有机凝胶可以不仅在零下三十度仍然保持柔软凝胶状态,而且粘附强度大大增强。利用这个特性,研究人员可以用仅有小拇指大小的天然DNA有机凝胶在零下二十度通过粘附提起一部手机。这个例子证明天然DNA展示了非常出色的有机凝胶形成能力,并且天然地具有特殊的粘附性能。也展示了其在特殊气候条件下,在柔性电子学和机器人领域的应用潜力。


图3.DNA有机凝胶 (图片来源JACS)


由于水溶液中天然DNA转化过程非常迅速,如何使这个快速的交联过程变得均匀缓慢、可控是开发多种形式天然DNA材料的关键,比如制备天然DNA薄膜。为此,研究人员引入气体催化剂概念,首次利用气体把天然DNA转化为薄膜材料。通过这个可控的转化过程可以将各种材料复合到天然DNA薄膜中,包括碳纳米材料、金属或金属氧化物纳米颗粒、高分子、高分子单体、金属离子等。这个策略也可将不同的复合材料像焊接一样连接在一起形成复杂复合结构材料,比如一个天然DNA“花朵”。引入微电子加工领域光刻蚀概念后,对天然DNA复合薄膜进行正刻蚀和负刻蚀形成了不同的图案化薄膜。这个方法在微纳结构材料领域显示了巨大潜力。


图4. DNA膜(图片来源JACS)


最后研究人员将天然DNA转化为日常生活中常见的塑料制品比如电线的绝缘皮,拼图玩具和勺子。这进一步验证了天然DNA可以作为一种可再生可降解的天然资源用于取代石油化学产品的可行性和巨大潜力。


图5. DNA七巧板. (图片来源JACS)


总之,上述研究结果显示天然DNA具有多方面的材料开发能力和多功能性,能被制作成许多由石化原料制造的产品。某些方面还显示了石化产品不具备的功能,包括可降解性以及生物功能。这些发现为未来整个石化产品资源消耗引起的资源匮乏和环境污染等问题提供了一个可持续的、经济的、新兴的和诱人的解决方案。



BioArt & 作者问答:


问:估计什么时候能有第一个产品啊?


答:不知道。这个研究成果论文刚刚发出。产业化取决于今后有多少人和多少资源投入到后续的研究、研发、中试、工业化商业化,等等。保守的估计,小规模产品应该至少3-5 年吧。大规模替代塑料至少5-8年。大规模取代塑料至少得十年。当然,协同合作的力量高不可估。天时地利人和的化,可以加快产出。


问:已经有研究组将生物质纤维素转化成塑料;也有用生物质蛋白做树脂等材料。生物质DNA有什么优势?


纤维素的主要功能是支撑保护生物体,其结构不会轻易被打破。所以纤维素的分离提纯很困难。需要高温强酸等极端条件。还不太不溶于水。蛋白质也有类似问题。而且蛋白质种类太多,彼此组分性质千变万化。很难控制。同时,纤维素主要来源于作物,蛋白质是人类食品的重要部分。用他们做塑料都会和农业竞争。最重要的区别是,用纤维素做材料,首先需要把纤维素降解成小分子,然后再化工合成大分子如塑料。整个过程和用石油做塑料差不多。用生物质DNA做塑料是直接交联,一步到位。完全不需要最耗能、最耗时、最污染的前期处理过程。


问:DNA会不会很不稳定?能否控制降解时间?


答:DNA在没有水的情况下是极其稳定的(木乃伊的DNA可以在干燥环境下保存几千年就是一个例证)。降解时间的控制是可实现的,正在探索。


问:产品的生物安全问题。天然DNA吃下去没有毒吗?


答:人们每时每刻都在吃天然DNA(各种有益或无益的细菌)。所有食品,无论荤素,都含有DNA。生食的食物比如水果,生鱼片,沙拉等,天然DNA就直接进入消化道了。


问:虽然天然DNA在自然界到处都是,从工业化角度,如何大规模收集生物质DNA做原料?


答:因为实验室研究成果才刚刚发表,这个工业化问题还没有透彻地研究过。但已经有很多有启发性的线索了。比如,污染大江大湖以及海洋的藻类,大海中的微生物,所有酿酒厂的酵母,果汁厂的果渣,制药厂的菌渣等等,都可以相对方便地收集到工业规模的天然DNA。也可以像石油工业有巨大无比的储油罐那样,用工业法高密度培养细菌(每二十分钟DNA就加倍)。等等。这些都不和农业竞争。和石油开发过程相比(需要勘探,钻井,开采,储运,提炼等),投入要小很多。